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In this paper, we extend a model of host-parasite coevolution to incorporate the semiconservative nature of
DNA replication for both the host and the parasite. We find that the optimal mutation rate for the semiconser-
vative and conservative hosts converge for realistic genome lengths, thus maintaining the admirable agreement
between theory and experiment found previously for the conservative model and justifying the conservative
approximation in some cases. We demonstrate that, while the optimal mutation rate for a conservative and
semiconservative parasite interacting with a given immune system is similar to that of a conservative parasite,
the properties away from this optimum differ significantly. We suspect that this difference, coupled with the
requirement that a parasite optimize survival in a range of viable hosts, may help explain why semiconservative
viruses are known to have significantly lower mutation rates than their conservative counterparts.
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I. INTRODUCTION

Introduced over 30 years ago, the quasispecies model of
evolution[1,2] has provided an invaluable tool for the study
of complex evolutionary behaviors. In the model, a fitness
landscape is introduced, which accounts, often in a highly
approximate manner, for the complex interplay between
genotype, phenotype, and environment by assigning a rela-
tive fitness for each genomic sequence(and thus associating
phenotype with genotype, an approximation that must be
treated with care). Through the consideration of numerous
individually mutating copies of a genome, evolutionary sys-
tems can be studied analytically and numerically on these
fitness landscapes, which has provided enormous insight into
the process of evolution and the nature of mutation rates in
real biological systems. In particular, it was found that a
phase transition(known as the “error catastrophe”) occurs as
the mutation rate increases, and a marked crossover can be
observed from the existence of a quasispecies(wherein most
individuals in the population contain genomes close to a fit-
ness peak) to a near-random walk in genome space with no
discernible quasispecies present[2].

The vast majority of the literature on the quasispecies
model involve studies of asymptotic behavior on numerous
stationary landscapes[3–6]. This corresponds to a situation
where static environmental conditions are considered to be
the dominant evolutionary pressure on a species. However,
this picture fails to describe the cornucopia of evolutionary
pressures in nature. Many organisms, parasites, survive
through the detrimental use of host biochemical processes.
The parasite requires the host to live. The host survives bet-
ter if it can avoid or destroy the parasite, providing an in-
triguing scenario: the host must evolve to defeat the parasite
and the parasite must evolve to evade the host’s defenses.
This creates a nonlinear feedback cycle as both species scour
a time-dependent fitness landscape that changes as the other
species mutates.

Parasites are ubiquitous in nature, ranging from the mi-
croscopic(e.g., viruses, bacteria, protozoa) to fungi, helm-
inths, and arthropods. The interaction between parasites and
hosts is very complex, with parasites exhibiting multistage

life cycles, inert phases, and the use of multiple intermediate
hosts, while hosts employ a wide variety of behavioral and
immune defenses. This ongoing struggle has been well docu-
mented in mammals, birds, fish, bacteria, and other organ-
isms.

Recent work on time-dependent quasispecies landscapes
[7,8] has allowed for the study of a simple model of coevo-
lution by Kamp and Bornholdt[9,10], discussed in detail in
Sec. III. They derived a parameter-independent expression
for the optimal mutation rate for a host genome, which com-
pared admirably with experimental results on B-cell muta-
tion rates[9]. An expression was also derived for optimal
viral mutation rates[10] which, although dependent on the
parameters of the model, explained numerous phenomena
including the constancy of mutation rates within a viral class.
However, this model considers the interaction only between
a conservatively replicating parasite and host.

In its conservative formulation, the quasispecies model
considers single stranded genomes that produce multiple
copies of itself, each possessing a set of point mutations,
while the original genome is conserved. While this model is
obviously applicable to numerous RNA-based viruses, the
vast majority of organisms, including many viruses and other
parasites, store genetic information in double stranded DNA.
DNA replicates semiconservatively through a series of steps
discussed in Section II. In a recent work, Tannenbaumet al.
[11] reformulated the quasispecies model to accurately rep-
resent semiconservative systems, which were found to dis-
play fundamentally different behavior than conservative sys-
tems with respect to the error catastrophe in the infinite time
limit on a static landscape. Thus, to properly model the co-
evolution of a parasite and its host, the host system must
replicate semiconservatively, while the parasite can be mod-
eled as either conservative, as in the case of many ribovi-
ruses, or semiconservative, as by many lysogenic double
stranded DNA viruses or higher parasites. Retroviruses, such
as HIV, likely display characteristics of both modes of repli-
cation, as do immune systems that undergo somatic hyper-
mutation.

In this paper, we extend Kamp and Bornholdt’s model of
coevolution to the case of a semiconservative host interact-
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ing with either a conservative or semiconservative parasite.
We consider the optimal behavior for both the host and para-
site, and demonstrate the similarities and differences between
the conservative and semiconservative models.

The paper is organized as follows: in Sec. II we present
the quasispecies model and its extension to semiconservative
replication. In Sec. III we discuss the model of host-parasite
coevolution for both conservative and semiconservative
organisms. Section IV presents the results and discussion and
Sec. V presents our conclusions.

II. THE QUASISPECIES MODEL

In this section, we present some necessary background on
the conservative and semiconservative quasispecies models
for the purpose of a self-contained discussion. Greater detail
may be found in the original papers.

A. Conservative replication

The quasispecies model studies the evolution of a popu-
lation of organisms, each with a genomef=s1s2¯sn, where
eachsi represents a “letter” chosen from an alphabet of size
S. Often,S is chosen to be two to model the pyrimidine and
purine groups or four to model the nucleotides. Assuming
first-order growth kinetics and associating phenotype with
genotype(i.e., that the growth rate of an individual is directly
determined byf), it can be shown that

dxf

dt
= o

f8

Asf8dWsf,f8dxf8 − fstdxf, s1d

wherexf denotes the fraction of the population with genome
f, Asfd represents the fitness, or growth rate, of sequencef,
Wsf ,f8d is the likelihood of creating sequencef from f8
by mutations, andfstd=ofAsfdxf is the average fitness of
the population, holding the population size constant and in-
troducing competition. If only point mutations are allowed
and a genome-independent mutation probabilitye is as-
sumed, thenWsf ,f8d can be written in terms of the genome
lengthn and the number of bases at whichf andf8 differ,
the Hamming distanceHDsf ,f8d, as

Wsf,f8d = S e

S− 1
DHDsf,f8d

s1 − edn−HDsf,f8d. s2d

These equations can be greatly simplified in the case of a
single fitness peak landscape, where a master sequence,f0,
has a fitness much greater than all other sequences. The rest
of the genomes are assumed to be equally fit, which can be
described by the growth rates

Asfd = Hh, f Þ f0

s @ h, f = f0.
s3d

The sequences can then be grouped into Hamming classes
based on their distance from the master sequence by defining

wl = o
fPhfuHDsf,f0d=lj

xf s4d

and

Asld ; Asfd f P hfuHDsf,f0d = lj. s5d

This reduces the problem fromSn dimensions ton+1 dimen-
sions. If mutations that lead from higher to lower Hamming
distances are ignored(an approximation that becomes exact
asn→`),

dwl

dt
= o

l8=0

l
sn − l8d!
sn − ld!

Asl8dsedl−l8s1 − edn−sl−l8dwl8 − fstdwl ,

s6d

where fstd=olAsldwl =sw0+hs1−w0d=ss−hdw0+h. Defin-
ing yi =wi expfe0

t fssddsg removes the nonlinearity in these
equations and the linear set of differential equations can be
solved for any Hamming class. The solution for the master
sequence is

y0std = y0s0deqnst s7d

and, for the first Hamming class,

y1std = y0s0dnS seqnst − eqnhtds1 − qds
ss − hdq

D , s8d

where q=1−e, a definition we shall use throughout the
paper.

B. Semiconservative replication

In order to properly model a semiconservative system, a
double stranded molecule generated from an alphabet of size
Smust be considered, where each letteri uniquely pairs with
si +S/2dmod S. DNA requiresS=4, where the letters can be
assigned asA;1,G;2,T;3,C;4. A single DNA mol-
ecule of lengthn consists of a strandf=s1s2¯sn and a
complementary strandfI=sI1sI2¯sIn where sIi denotes the
complement ofsi. Hence, each DNA molecule may be rep-
resented by the pairhf ,fIj;hfI ,fj.

When a semiconservative molecule replicates, it under-
goes a three step process shown schematically in Fig. 1.
First, each genomehf ,fIj unzips to form two single stranded
genomes,f and fI. Each strand is then copied to produce
two new pairs,hf ,fI8j andhfI ,f8j, where the primes denote
the fact that the two fresh strands may contain replication
errors. At this point, proofreading mechanisms can distin-
guish between the new and old strands and may fix all or
some of the replication errors, which can be spotted by the
fact thatsi8ÞsIi. All of these repair mechanisms are included
in the base-independent error probabilitye. In the last step,
the new and old strands become indistinguishable. Various
maintenance enzymes repair the remaining mismatches, but
cannot determine which of the strandsf andfI8 is the newly
replicated strand. Hence, the repair is made in the new strand
with 50% probability and in the old strand with 50% prob-
ability. The final result is that the original strandhf ,fIj is
replicated to create two new strands,hf9 ,f9

I

j and hf- ,fI-j

[12].
The quasispecies equations for this system can be written

as [11]
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dxhf,fIj

dt
= o

hf8,fI8j

Ashf8,fI8jdxhf8,fI8jfpsf8,hf,fIjd

+ psfI8,hf,fIjdg − fAshf,fIjd + fstdgxhf,fIj, s9d

where fstd=ofAshf ,fIjdxhf,fIj and psf8 ,hf ,fIjd represents
the probability that the unzipped strandf8 will produce the
pair hf ,fIj. To make these equations more useful, we can
define Asfd;Asf ,fId and xf; 1

2xhf,fIj if fÞfI and xf

;xhf,fIj if f=fI. After some manipulation, we obtain

dxf

dt
= 2o

f8

Asf8dxf8S e

2
DHDsf,f8dS1 −

e

2
Dn−HDsf,f8d

− fAsfd

+ fstdgxf, s10d

wherefstd=ofAsfdxf. This differs from Eq.(1) by a change
in Wsf ,f8d to reflect the unzipping and repair properties of
the genome, and the additional term −Asfdxf, which repre-
sents the destruction of the initial genome.

We now turn our attention to semiconservative replication
on a single fitness peak landscape. This case is more compli-
cated than for a conservative system, since viability genes
often exist on both strands in nature. Hence, if there exists a
sequencef0 with fitnesss, it stands to reason that the se-
quencefI0 should have fitnesss as well, effectively creating
a double fitness peak landscape(this assumption is by no
means fundamental to the work). However, noting thatxf

=xfI
for all times, both by definition and by conservation in

Eq. (10), this difficulty can be sidestepped. As long asn is
not too small, the area around each fitness peak can be lo-
cally treated as a single fitness peak landscape as the two
peaks are distant in sequence space. Hence, ignoring back
mutations, the two master sequences obey the equations

dw0

dt
= 2s1 − e/2dnswI0 − fs + fstdgw0

= 2s1 − e/2dnsw0 − fs + fstdgw0, s11d

dwI0

dt
= 2s1 − e/2dnsw0 − fs + fstdgwI0

= 2s1 − e/2dnswI0 − fs + fstdgwI0, s12d

where wi represents the concentration of theith Hamming
class as before. Therefore, we can redefine the concentration
of the master sequence to include bothw0 andwI0 and use Eq.
(11) for the sum of the two. While this is not strictly neces-
sary and has no effect on the results, it does reduce the book-
keeping, and the characteristics of the individual peaks can
be obtained by simply dividing by two. A similar procedure
yields

dw1

dt
= 2s1 − e/2dn−1S e

2
Dnsw0

+ 2s1 − e/2dnhw1 − fh + fstdgw1, s13d

where we include sequences of Hamming distance one away
from both master sequences. The definitionyi
=wi expfe0

t fssddsg once again removes the nonlinearity. The
solutions for the first two Hamming classes are

y0std = y0s0de2ss1 − e/2dn−s, s14d

y1std = y0s0dnS ses1 − e/2dn−1

sS− 1dss − hdf2s1 − e/2dn − 1gD
3 sesf2s1 − e/2dn−1gt − ehf2s1 − e/2dn−1gtd. s15d

III. HOST-PARASITE CO-EVOLUTION

Historically, the main focus of research on the quasi
species model has related to static and equilibrium properties
of the system[5,3,13–17]. A number of recent works, how-
ever, have explored the dynamics of the system under vari-
ous conditions[7,8,18,19], which has allowed the study of
the simple model of coevolution described here. Following
the work of Kamp and Bornholdt[9,10], we envision a popu-
lation of host and parasite organisms(which we shall refer to
as the immune system and virus), each described by a set of
quasispecies equations. Ignoring the interspecies interaction,
the immune and viral genomes, of lengthnis andnv, respec-
tively, evolve independently on a single fitness peak land-
scape, where the master sequences have fitnesssis@his and
sv@hv. To model the deleterious effect of the immune sys-
tem on the virus, the dominant immune genome imposes a
large death rated on the corresponding viral sequence. If this
dominant immune genome matches the viral master se-

FIG. 1. A schematic model of DNA replication. The original,
double stranded genome unzips to create two single stranded ge-
nomes. Each of these is copied to produce two new complementary
strands. Methyl-directed and post-methylation DNA repair keep the
effective error rate low. Adapted from Tannenbaumet al. [11].
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quence, the viral fitness peak will move to an arbitrary se-
quence of the first Hamming class. The viral quasispecies
then adapts to this new fitness peak on a timescaletv, the
time required for the population of the new master sequence
to overtake that of the old. At this point, the immune system
fitness peak adjusts to match the new viral peak, and adapts
on a similarly defined timescaletis. Thus, through the itera-
tion of these steps, the viral fitness peak scours sequence
space in an attempt to avoid the immune system, which fol-
lows on its heels. Applying recent results on dynamic fitness
landscapes[7], regions of stability can be defined for both
the viral and immune quasispecies by determining a charac-
teristic timescale for regrowth of a new master sequence. If
the landscape moves slowly enough, the master sequence has
time to regenerate to the master sequence concentrations
reached before the peak shift and the species will survive for
all time. If, however, the master sequence cannot regenerate
rapidly enough, a second peak shift will occur before the
new master sequence reaches the concentration held by the
old master sequence before the first shift. The third master
sequence cannot reach the levels of the second, and this con-
tinues until, eventually, there is no discernible master se-
quence in the population. For the conservative case, this can
be stated rigorously by comparing the growth of a single
member of the first Hamming class described by Eq.(8) with
eht, the uninhibited growth of a random sequence far from
the fitness peak(as mutations in and out of this sequence
should cancel). Using Eq.(8) this ratio can be defined, for
both the immune and viral quasispecies, as[8,9]

k ;
w1std

nehtw0s0dsS− 1d
; S sesqns−hdt − esqnh−hdtds1 − qds

sS− 1dss − hdq
D ,

s16d

wheret is the lag time between peak shifts and the param-
eters hq,s ,¯j represent the parameters for either species.
The quasispecies survives only whenkù1.

The last piece necessary to complete the coevolution
model, then, is the speed with which the landscape moves.
By the definition of our model,t is the sum of the time
required for the regeneration of the virus,tv, plus the time
required for the regeneration of the immune system,tis.
Hence, we must solve fort=tis+tv, where

esqv
nhv−ddtvw0,vstd = esqv

nsvtvd w1,vstd
nsS− 1d

, s17d

eqis
n histisw0,isstd = esqis

n sistisd w1,sstd
nsS− 1d

. s18d

This can be solved to obtain

esqv
nhv−ddtveqv

nsvt = eqv
nsvtv

seqv
nsvt − eqv

nhvtds1 − qvdsv

sS− 1dssv − hvdqv
, s19d

eqis
n histiseqis

n sist = eqis
n sistis

seqis
n sist − eqis

n histds1 − qisdsis

sS− 1dssis − hisdqis
,

s20d

which yields, with the reasonable approximations thatq<1
ands@h (the latter of which is used throughout the paper),

tv > −

lnS1 − qv

S− 1
D

qv
nssv − hvd + d

, s21d

These equations can be applied to determine the optimal mu-
tation rate for both the host and the parasite. The host can
minimize the region of viability for the parasite by evolving
a mutation rate such that

] kv

] eis
= 0, s23d

yielding [9]

eis − 1 −nis ln S eis

S− 1
D = 0. s24d

This equation has the nice quality of being independent of
the parameters of the immune model, as well as the proper-
ties of the virus. The solution to this equation is shown in
Fig. 2 and compared to the experimentally verified mutation
rate for human B-cell receptors. This is discussed at length in
Sec. IV.

Optimizing the viral mutation rate requires solving for

] kv

] ev
= 0, s25d

or [10]

FIG. 2. Optimal immune system mutation rate vsnis. The
dashed lines represent experimental values for somatic hypermuta-
tion of B-cell complementary determining regions, adapted from
Ref. [9].
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fqv
nvssv − hvd + dghnvsqv − 1dqv

2nvsv
2tis

+ d fqv + sqv − 1dnvqv
nvsvtisg + tvfqv − qv

nv+1

− sqv − 1dnvqv
2nvsvtisgj + nvqv

nvsqv − 1d

3shv
2 − dsv − hvsvd lnS1 − qv

S− 1
D = 0, s26d

the solution of which is shown in Fig. 3 for a chosen set of
parameters.

We now turn our attention to the central theme of this
paper, the coevolution of semiconservative organisms. Ap-

plying the results of Sec. II and following the procedure
outlined above, we find, for a semiconservatively replicating
host,

kis = S siseiss1 − eis/2dnis−1

sS− 1dssis − hisdf2s1 − eis/2dnis − 1gD
3 sef2siss1 − eis/2dnis−sis−hisgt − ef2hiss1 − eis/2dnis−2hisgtd,

s27d

t = tis + tv, s28d

tis = −

lnS s1 − eis/2dniseis

f2s1 − eis/2dnis − 1gsS− 1dD
f2s1 − eis/2dnis − 1gssis − hisd

. s29d

A conservatively replicating virus interacting with this host
will still follow the behavior described by Eqs.(16) and(21),
albeit with the proper, semiconservativetis defined above.
For the case of a semiconservative virus we obtain

kv = S svevs1 − ev/2dnv−1

sS− 1dssv − hvdf2s1 − ev/2dnv − 1gD
3 sef2svs1 − ev/2dnv−sv−hvgt − ef2hvs1 − ev/2dnv−2hvgtd,

s30d

tv = −

lnS s1 − ev/2dnvev

f2s1 − ev/2dnv − 1gsS− 1dD
f2s1 − ev/2dnv − 1gssv − hvd + d

. s31d

We now proceed to find the optimal mutation rates for
both organisms. Differentiatingkv by eis and setting the
result to zero gives us a criterion for the optimal immune
mutation rate,

− 2 +eis + niseis − 2s1 − eis/2dnisF− 2 +eis + niseis lnS sS− 1df2 − s1 − eis/2d−nisg
eis

DG
f1 − 2s1 − eis/2dnisg2seis − 2deis

= 0. s32d

This equation has all of the nice properties of Eq.(24), de-
fining an optimal mutation rate for any genome length, inde-
pendent of the parameters of the system. The solution to this
equation is plotted in Fig. 2, along with the conservative
solution and the experimental range for observed rates per
base pair per generation of somatic hypermutation in the
complementary determining regions(CDR’s) found in B-cell
antigen receptors.

To maximize the stability of the viral quasispecies we set
]kv /]ev=0 as before. After a fair bit of work, we obtain an
unwieldy expression omitted here in the interest of space
[20]. The expression simplifies immensely in the limitd

→`, the limit of an ideally efficient immune system. In this
limit,

nvev

2f1 − 2s1 − ev/2dnvg2 +
nvsvevs1 − ev/2dnvtis − 1

1 − 2s1 − ev/2dnv
= 0.

s33d

The ideally efficient immune system is not an unreasonable
approximation, as immune systems are highly efficient in
destroying invaders once a suitable antibody is produced.
The full expression as well as the above limiting form are
dependent on both the parameters of the model and the prop-

FIG. 3. Optimal viral mutation rate vsnv for a conservative and
semiconservative virus interacting with a semiconservative immune
system;nis=100,sis=sv=100,his=hv=1,d=200,eis=0.001.
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erties of the immune system as in the conservative case. The
solution of the full expression for a particular set of param-
eters is shown in Fig. 3.

IV. RESULTS AND DISCUSSION

Given the fundamental differences between semiconser-
vative and conservative modes of replication, the most strik-
ing aspect of Figs. 2 and 3 is the similarity between the
conservative and semiconservative optimal mutation rates at
high n, particularly for the viral species. This is most easily
understood by noting that, ass1−e /2dn→1 for any semicon-
servatively replicating organism, the probability that a muta-
tion will be found in theoriginal strands after replication
vanishes. Hence, in this limit, semiconservative and conser-
vative replication are expected to mimic each other. This
parameter is shown in Fig. 4 for the optimal viral and im-
mune mutation rates. Clearly, with the exception of small
immune genomes, the conservative system can be used as a
good approximation for semiconservative replication. It is
important to note, however, that this knowledge could not
have been extracted from the data for the conservative sys-
tem. A large value fors1−e /2dn in the conservative system is
a necessary but not sufficient criterion to justify the use of a
conservative model, and the full semiconservative calcula-
tion is required.

Equation(26) remains dependent on the parameters of the
model, but general trends are obvious when biologically rea-
sonable parameters are employed. While the extremal behav-
ior of Eqs. (27) and (30) differs little from Eq. (16) for ge-
nome lengths that are not too small, the behavior away from
the maxima differs greatly. Figure 5 displayskv vs ev for a
given set of parameters for both the conservative and semi-
conservative models. It is immediately clear that, while the
two models coincide at smalle (with a slightly higher peak
height for either species for some parameters), their behavior

differs greatly otherwise, with the semiconservative model
displaying a more drastic dropoff in viability ase increases,
true for all biologically reasonable parameters studied. The
parameters shown in Fig. 5 were chosen as a representative,
rather than extreme, example of this behavior. The impor-
tance of this result is best understood in light of the evolu-
tionary pressures one would expect a viral population to en-
counter. The independence of Eq.(32) from the properties of
the viral system suggests that there exists an optimal muta-
tion rate for an immune receptorindependentof the qualities
of the parasite against which it is defending. Thus, it is rea-
sonable to expect(within the limitations imposed by addi-
tional evolutionary pressures, such as the need to distinguish
between self- and foreign antigens) an immune receptor to
evolve this mutation rate nearly exactly. However, in the
viral case, the optimal mutation rate depends strongly on the
nature of the immune system it is attacking. Thus, the virus
must evolve the mutation rate that maximizes its overall vi-
ability against the range of immune systems it is likely to
infect, including both inter-species and intra-species viabil-
ity. The mutation rate that optimizes defense against one host
may be a poor choice for another, and the virus must find the
mutation rate that affords the best protection against all
hosts, even if this is not the best mutation rate for evading
any particular immune system. Such a compromise clearly
involves the behavior ofkv over a wide range ofe, rather
than just at the maximum. One would therefore expect the
more drastic dropoff at highere to force the semiconserva-
tive virus to develop a lower mutation rate so as to increase
its viability against immune systems that lower theev with
the maximal value of]kv /]ev. Quantifying this statement
requires an intelligent estimate of the distribution of immune
properties, a subject of future research. Qualitatively, this
agrees well with the experimentally verified fact that semi-
conservative viruses display significantly lower mutation
rates than their conservative counterparts[21,22].

FIG. 4. s1−e /2dn for the optimal mutation rate of a semiconser-
vative immune system and virus. This parameter can be used as a
measure of the “conservativeness” of a semiconservative system;
sis=sv=100,his=hv=1,d=200,eis=0.001.

FIG. 5. kv vs ev for a conservative and semiconservative virus
interacting with a semiconservative immune system;nis=nv
=100,sis=sv=100,his=hv=1,d=200,eis=0.001.
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V. CONCLUSIONS

In this paper, we have extended Kamp and Bornholdt’s
model of coevolution to incorporate the semiconservative na-
ture of DNA replication for both species. A parameter-
independent expression was derived for the optimal mutation
rate of an immune receptor, which agrees well with experi-
mental data. Convergence of the conservative and semicon-
servative results was demonstrated for realistic genome sizes,
justifying the use of a conservative model in this case.

Optimizing the stability of the immune species yielded a
maximum that coincides with the conservative model for re-
alistic genome sizes. A similar correspondence exists for the
virus, albeit with a dependence on the parameters of the
model. Away from the maximum, the conservative and semi-
conservative models display different behaviors that provide
a possible explanation for the high mutation rates found in

conservative viruses. It is always dangerous to extrapolate
from a simplified model of this kind to the complex systems
found in nature. A true virus and immune system must con-
tend with innumerable evolutionary pressures, biological,
chemical and otherwise, such as the requirement that T-cells
recognize and do not bind host proteins. The work repre-
sented in this paper describes a generalized model which we
feel captures the robust qualitative features of host-parasite
coevolution, providing insight into the complex workings of
nature.
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